Eric Bittner: Condensation of light/matter excitations in organic quantum cavity devices: theory, models, and prospects
Wann |
25.03.2013 von 11:15 bis 12:00 |
---|---|
Wo | FRIAS Seminarraum, Albertstrasse 19, 79104 Freiburg |
Name | Dr. Britta Küst |
Kontakttelefon | +49 (0)761-203 97418 |
Teilnehmer |
Open to University members / universitätsoffen |
Termin übernehmen |
![]() ![]() |
Eric Bittner
Department of Chemistry, University of Houston, USA
Condensation of light/matter excitations in organic quantum cavity devices: theory, models, and prospects
Within the past 5 or so years, a number of experiments have revealed the condensation of polariton quasi-particles in quasi 2d inorganic quantum well cavities. A polariton condensate forms when there is a sufficiently high density of excitations in a material sandwiched between two dielectric reflectors so that spontaneous symmetry breaking occurs and the exciton gas condenses to form a superfluidic state. This has opened the door to test a number of novel and fundamental theories ranging from the BEC to BCS cross over to Hawking radiation from black holes.
Loosely speaking, the condensation occurs when all the dipole oscillators in the system are driven by a common field mode and spontaneously begin to evolve synchronously much like the effect of super-radiance. Our work has focused upon the dynamics of condensate formation in organic semiconductor-based systems. I will discuss both the equilibrium and non-equilibrium/steady state regimes using models based upon one and two dimensional arrays of organic chromophores. Time permitting, I will discuss our work on linear arrays of quantum nanorods coupled by a common surface plasmon mode.