Artikelaktionen

Sie sind hier: FRIAS School of Soft Matter … Veranstaltungen Nobel Laureate Robert Huber: …

Nobel Laureate Robert Huber: "Intracellular Proteolysis: Mechanisms, Structures, and Application"

Wann 16.12.2010
von 16:15 bis 17:15
Wo Chemistry Lecture Hall, Albertstr. 21, Freiburg
Name
Kontakttelefon +49 (0)761 203 97418
Teilnehmer Open to the public
Termin übernehmen vCal
iCal

Nobel Laureate Robert Huber
Max Planck Institute of Biochemistry, Martinsried

The Nobel Prize in Chemistry 1988 was awarded jointly to Johann Deisenhofer, Robert Huber and Hartmut Michel "for the determination of the three-dimensional structure of a photosynthetic reaction centre".

Intracellular Proteolysis: Mechanisms, Structures, and Application

Within cells or subcellular compartments misfolded and/or short-lived regulatory proteins are degraded by protease machines, cage-forming multi-subunit assemblages. Their proteolytic active sites are sequestered within the particles and located on the inner walls. Access of protein substrates is regulated by protein subcomplexes or protein domains which may assist in substrate unfolding dependent of ATP. Five protease machines will be described displaying different subunit structures, oligomeric states, enzymatic mechanisms, and regulatory properties.


Proteasome
Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D. and Huber, R. (1997) Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463-471.
Groll, M., Heinemeyer, W., Jäger, S., Ullrich, T., Bochtler, M., Wolf, D. H. and Huber, R. (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: A mutational and crystallographic study. Proc. Natl. Acad. Sci. USA 96, 10976-10983.
Groll, M., Bajorek, M., Köhler, A., Moroder, L., Rubin, D. M., Huber, R., Glickman, M. H. and Finley, D. (2000) A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062-1067.
Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K., Lindow, S., Kaiser, M. and Dudler, R. (2008) A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452, 755-758.


HslV/HslU
Bochtler, M., Hartmann, C., Song, H. K., Bourenkov, G., Bartunik, H. and Huber, R. (2000) The structure of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800-805.
Song, H. K., Hartmann, C., Ramachandran, R., Bochtler, M., Behrendt, R., Moroder, L. and Huber, R. (2000) Mutational studies on HslU and its docking mode with HslV. Proc. Natl. Acad. Sci. USA 97, 14103-14108.
Ramachandran, R., Hartmann, C., Song, H. J., Huber, R. and Bochtler, M.(2002) Functional interactions of HslV(ClpQ) with the ATPase HslU(ClpY). Proc. Natl. Acad. Sci. USA 99, 7396-7401.


Tricorn
Brandstetter, H., Kim, J. S., Groll, M. and Huber, R. (2001) Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414, 466-470.
Kim, J. S., Groll, M., Musiol, H. J., Behrendt, R., Kaiser, M., Moroder, L., Huber, R. and Brandstetter H. (2002) Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum. J. Mol. Biol. 324, 1041-1050.
Goettig, P., Groll, M., Kim, J. S., Huber, R. and Brandstetter, H. (2002) Structures of the tricorn interacting aminopeptidase F1 with different ligands explain its catalytic mechanism. EMBO J. 21, 5343-5352.


Dipeptidyl peptidase IV
Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Bode, W., Demuth, H. U. and Brandstetter, H. (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism.Proc. Natl. Acad. Sci. USA 100, 5063-5068.


DegP(HtrA)
Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M., and Clausen, T.
(2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455-459.
Krojer, T., Pangerl, K., Kurt, J., Sawa, J., Stingl, C., Mechtler, K., Huber, R., Ehrmann, M. and Clausen, T. (2008) Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl. Acad. Sci. USA 105, 7702-7707.
Krojer, T., Sawa, J., Schäfer, E., Saibil, H. R, Ehrmann, M, and Clausen, T. (2008) Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885-890.
Krojer, T., Sawa, J., Huber, R. and Clausen, T. (2010) HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat. Struct. Mol. Biol. 17, 844-852.
Merdanovic, M., Mamant, N., Meltzer, M., Poepsel, S., Auckenthaler, A., Melgaard, R., Hauske, P., Nagel-Steger, L., Clarke, A. R., Kaiser, M., Huber, R. and Ehrmann, M. (2010) Determinants of structural and functional plasticity of a widely conserved protease chaperone complex. Nat. Struct. Mol. Biol. 17, 837-843.